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Abstract: The stereochemical course of the 
disilenes and the photochemical and thermal 
cribed. 

titled photo-conversion to yield Z-and E-substituted 
interconversion of the latter twocompo<nds are des- 

Symmetrically substituted cyclotrisilanes (&, R=R') undergo photolysis to provide the cor- 

responding disilenes (2, R=R') nearly quantitatively, based on the stoichiometry shown below 

(eq I).1 Therefore, the use of a less symmetrically substituted cyclotrisilane (A, R f R') should 

t 

: R=t-butyl, R'= mesityl z- 
b : R and R' interchanged E- a 

: R=t-butyl, R'=mesityl 

- 
: R-t-butyl, R'=mesityl 

at a silicon atom in la as 
e 

indicated by parenthesis 

lead to the formation of a mixture of 2 and z disilenes (2-x and E-z), thereby providing an oppor- 

tunity to disclose the stereochemical course of this photo-fragmentation. The ground-state con- 

formations of both 2-2 and J-,, are expected to be nearly coplanar (with a slightly twisted Si=Si 

bond).* This note describes 1) the synthesis of cis,cis- and cis,trans-1,2,3-tri-t-butyl-1,2,3- 

trimesitylcyclotrisilanes (,& and a) and 2) the stereochemical course of the photoconversion of 

&, and & to Z-and E-1,2-di-t-butyl-1,2-dimesityl-disilenes (2-k and 2-k). The photochemical and -- 

thermal interconversion of the latter two compounds is also discussed. These results complement 

those recently reported by Michalczyk, West, and Michl,3 although some discrepancies are noted. 

The synthesis of & and & follows a method developed earlier.1a*2a Thus, reaction of t-butyl- - 

mesityldichlorosilane (9.1 mm01 in 10 mL of DME) with lithium napthalenide (20 mmoL in 25 mL of 

DME) (addition at -78°C and warming to room temperature) provided, after the usual work-up, & 

mp 189-191"C, and & mp 267-268.5'C, in 7 and 38% yield, respectively. The stereostructures 

(eq 1) assigned to these 

tral data.4 It is worth 

ane) 379 (E 460) and 412 

(cyclohexane) 334 (1000) 

trisilane.Ia 

compounds are based on high-resolution mass and 1H NMR (250 MHz) spec- 

noting that the UV and visible absorption maxima of & [X,x (cyclohex- 

(550)] are considerably red shifted as compared with those of & [Lx 

and 363 (990)], the latter values being normal for this type of cyclo- 
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The photolyses of & (19 mM) and ,@ (16 mM) in degassed methylcyclohexane-d14 with a spiral, 

low pressure, mercury lamp (125W) at -72'C were followed separately by IH NMR spectroscopy using 

a known amount of dioxane as a standard. Two sets of new signals, ascribable to disilenes z-& 

and -G,5 soon appeared upon irradiation at the expense of those due to & or lb. In both 

cases, the combined yield of z-g and E-g was nearly quantitative at 70% conversion of starting 

material (Fig. l), and the initial ratio of z-,Y@ to 2-k changed to a photo-stationary ratio of 

ca. 3.5:1 on further irradiation (Fig. 2). Prolonged irradiation 02 h) resulted in the gradual 

decompositionlb of z-& and -& at similar rates . The initial ratios of z-k:i-E are signi- 

ficantly different in the two cases: 7.1:1 for & and 0.38:1 for fi. These ratios are to be 

compared with that (z-&:E-%=1.6:1) observed at the initial stage of the photolysis of 2-t- - 

butyl-2-mesityl-hexamethyltrisilane (z)3 under the same conditions as those employed for 3 and 

Q (see Fig. 2).6 

i i 
TlYE(h) 

Fig. 1. Time course of the 
photolysis of 12 C-O-) 
and l& (-A-) at -72OC. 

Fig. 2. Ratio of Z-2a : E-2a 
during the photolyFis^of &'70), 
1A (A) and A(U) at -72'C. 

It has been established that 1) 2-aryl substituted trisilanes (e.g. 2 in Scheme 1) undergo 

photo-induced fragmentation to provide the corresponding silylenes (,$) which in turn dimerize to 

form the disilenes (&)7 and 2) cyclotrisilanes (1 mol) initially provide on photolysis disilenes 

(1 mol) and silylenes (1 mol), the latter species providing additional disilene (0.5 mol) in the 

manner already mentioned-l Therefore, it can be argued that, if 1) the initial ratio of z-& to 

E-G observed during the photolysis of compound ;?. represents the kinetic product distribution 

(1.6:1, see above) for silylene dimerisation and 2) that silylene generated in the photolysis of 

$ is in the same electronic state as that generated from the photolysis of la,' then the initial 

photo-induced cleavage of cis,cis-cyclotrisilane k proceeds with retention of configuration to 
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produce disilene 2-G (Scheme 2, z to J ratio: calcd based on the 1.6:1 distribution ratio, 

6.9:1; observed, 7.1:1). For cis,trans-cyclotrisilane ,& there are two modes of cleavage, a and 

b (Scheme 31, one of which is expected to be preferred over the other. If the above stereochem- 

ical course (retention) 

as the initial ratio of 

preference, 0.39:1; for 

progress. 

applies in the case of Q, as well, then mode a is clearly favored over b 

Z-& to z-&is 0.38:1 (2 to E ratio: calcd for random, 0.75:1; for 4:l 
- 

mode a only 0.26:1). Further work to corroborate this conclusion is in 

Scheme 1 
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Scheme 3 
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I Z-2a + 4 0.38 : 1 
t-Bu b 

lb 

While Z-a and E-,&b are readily photo-isomerized (see above), thermal interconversion between 
- - 

2-3 and E-&a, is also observed on heating photolysis mixtures above room temperature. The con- 

version oYz-& to z-& is complete within 1 h at 1OO“C. The equilibrium ratio of 2-a to Z-&r, 

at room temperature is 51.7:1. (AGO = -2.3 kcal mol-I). The kinetic parameters pertinent to 

this isomerization are: k (79.3'C) = (2.18 i: 0.06) x ~O+S-~, k (60.4“C) = (3.03 f 0.11) x 

10-5s-'. , AH*= 23.4 2 0.9 kcal mol-I; AS+ = -9.4 2 2.7 cal K-l mol-I. The mechanism of this iso- 

merization involves solely rotation about the Si-Si double bond, since in the presence of the 

silylene trap 2,3_dimethylbutadiene at 8O'C the rate of isomerization was not affected and no 

trapped products were formed, thus precluding a thermal dissociation-recombination pathway via 

the silylene.' The above activation parameters are of obvious theoretical interest. However, we 
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defer discussion on this aspect until the behavior of ground and excited state potentials of 

disilene on rotation about the double bond has been adequately studied.IO 
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1H NMR (250 MHz, C6D6, r.t.) of la shows the presence of three-fold symmetry: 6 1.44 (s, 
27H, t-Bu), 2.06 (s, 9H, E-Me), 240 (s, 18H, o-Me), 6.67 (s, 6H, Ar-H). All the o-Me's 
are chemical shift equivalent, cf. those of lb: Mass spectrum (electron impact): found 
555.3301; calcd for M-C4H9, 555.3299. lH NMkVU(C6D6, r.t.) of & is consistent with the slow 

rotation of the two cis-oriented aryl groups along the Si-C bond: - 
(s, 

6 0.96 (s, 9H, t-Bu), 1.34 
18Hr-Bu), 2.11 (s, 6H, E-Me), 2.14 (s, 3H, E-Me), 2.66 and 2.93 (s and s, 12H, o-Me), 

2.99 (s, 6H, o-Me), 6.74 and 6.85 (s and s, 4H, Ar-H), 6.89 (6, ZH, Ar-H). Mass spectrum 
(electron impact): found 555.3295; calcd for M-C H9, 
Z-&a: 1H NMR (250 MHz, methylcyclohexane-d14) 6 4 

555.3299. 
relative to dioxane, 3.53) 1.29 (s, 18H, 

t-Bu), 2.07 (s, 6H, E-Me), 2.54 (s, 12H, C-Me), 6.60 (s, 4H, Ar-H). E-2a: IH NMR (250 MHz, 
iethylcyclohexane-d14) 6 0.96 (s, 18H, t-Bu), 2.23 (s, 6H, E-Me), 2.73 (s, 12H, g-Me), 6.86 

(s, 4H, ArH). 
elsewhere. 

The isolation and full characterization of z- and i-& will be documen;ed 
The chemical shifts of 2-a and 

The statement made in the recent report3 
E-a in C6D6 agreed with those reported. 

on txe preparation of Z- and E-2a that "photolysis 
of [$I at -8O'C produced more than 95% of the pale yellow disilzne [&T,%ostly as the trans 
isomer [I&&]." 
Immediately after 

seemed to conflict with our results observed in the photolysis & and g. 
the appearance of this paper, 

photolysis under homogeneous conditions with 
we prepared compound $_ and observed its 

the results indicated in Fig. 2. 
West, R.; Fink, M.J.; Michl, J. Science ,&9&,, 214. 
The latter assumption seems reasonable since the two processes, if concerted, are formally 
analogous in the Woodward-Hoffman sense, being of the type [uzs + ~2~ (~2~)]. 
The silylene ,$, generated from photolysis of 
IH-NMR (250 MHz, C6D6) 6 0.97 (s, 9H, -Bu), 

was readily trapped to provide compound 2: 

Me), 1.82 (d, ZH, J -17 Ha, 
.58 (d, ZH, JAB=17 HZ, -CaHB-), 1.73 (8, 6H, 

ArH), GC-MS; 286 ( Ng:- 
-CH&-), 2.15 (s, 3H, P-Me), 2.33 (s, 6H, C-Me), 6.79 (8, ZH, 

20.7%) 229 (M+-t-Bu, 51.5), 110 (C6HlOSi+, 100). - 

Me Me 

X - 
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